雑音の基礎




LTspiceドット・コマンドから学ぶアナログ回路アーカイブs

■問題
【 ノイズ 】

平賀 公久 Kimihisa Hiraga

 図1の(a)~(d)の4つの回路は,熱雑音またはショット雑音による,outの出力雑音電圧を計算する回路例です.(a)~(d)の回路で,1Hzあたりのoutの出力雑音電圧が最も低いのはどの回路でしょうか.


図1 熱雑音またはショット雑音を用いて雑音を計算する4つの回路例
outの出力雑音電圧が最も低いのは(a)~(d)のどれ?

(a) 10kΩのみの回路
(b) 10kΩと20kΩを直列にした回路
(c) 10kΩと20kΩを並列にした回路
(d) ダイオードの順方向電圧を使った回路

■ヒント

 図1の(a)~(c)の抵抗の熱雑音電圧は,抵抗をRとすると「vn=(4kTRΔf)1/2」になります.また,(d)のダイオードのショット雑音電流は,直流電流をI1とすると「In=(2qI1Δf)1/2」になります.この計算式を使って,4つの回路におけるoutの出力雑音電圧を計算します.ここで,kはボルツマン定数「k=1.38×10-23JK-1」,Tは絶対温度で27℃のとき「k=300K」,qは電子の電荷「1.602×10-19C」,Δfは雑音帯域幅で「Δf=1Hz」とします.

■解答


(d) ダイオードの順方向電圧を使った回路

 outの出力雑音電圧をvnとし,図1の(a)~(d)の雑音を次のように求めます.

(a)は「vn=(4kTR1Δf)1/2=12.9nV/√Hz」
(b)は「vn=(4kT(R1+ R2)Δf)1/2=22.3nV/√Hz」
(c)のR1とR2の並列抵抗を(R1||R2)とすると,「vn=(4kT(R1||R2)Δf)1/2=10.5nV/√Hz」
(d)のダイオードの小信号抵抗をreとすると「vn=(2qI1Δf)1/2×re=4.7nV/√Hz」

 この検討より,最も出力雑音電圧が低いのは,(d)のダイオードの順方向電圧を使った回路となります.

■解説

●雑音とは
 雑音は,回路システム全体の出力信号に干渉し,その出力信号に望ましくない不規則な変化を加えるものとして,広い意味で使われます.雑音を大きく分けると次の4つになります.

・商用電源のハム
・電磁波
・機械的な振動などの外的な要因
・抵抗や半導体デバイスの内部から発生する内的な要因

 ここでは,内的な要因になる「熱雑音」と「ショット雑音」について解説します.熱雑音とショット雑音は,周波数が変化しても雑音は一定で変わりません.この特性から,雑音が干渉して無視できないような,オーディオ信号を試聴すると,スピーカから聞こえる雑音は「サー」というような音に聞こえます.
 オーディオ回路を設計するとき,抵抗値や電流値は,さまざまな制約があります.このような制約の中で,低雑音設計をするときは,雑音の計算を元に最適な回路を選び,そして最適な回路定数にしていきます.以降では,熱雑音とショット雑音の性質について解説します.その後,図1の(a)~(d)の具体的なoutの雑音について机上計算とシミュレーションで確認します.

●熱雑音について
 熱雑音は,導体中の電荷キャリアが熱で励起され,不規則に動く熱擾乱から発生する雑音で,回路の部品では,抵抗で発生します.抵抗(R)で発生する熱雑音の式は「vn2=4kTRΔf」になります.ここでkはボルツマン定数,Tは絶対温度,Rは抵抗値,Δfは雑音帯域幅です.式中にRとTがあり,熱雑音のvn2は抵抗値と絶対温度に比例します.Δfは雑音帯域幅で,1Hzの帯域幅は1~2Hz間,10Hz~11Hz間,…,1000Hz~1001Hz間も同じ雑音帯域幅になります.この関係より,周波数が変化しても1Hzの雑音帯域幅におけるvn2は一定になり,熱雑音の周波数特性はフラットになります.

●ショット雑音について
 ショット雑音は,半導体のPN接合にある電位障壁を流れる直流電流により発生します.直流電流(I1)で発生するショット雑音の式は「In2=2qI1Δf」になります.ここで,qは電子の電荷,I1は直流電流,Δfは雑音帯域幅です.式中に,I1があり,ショット雑音のIn2は直流電流に比例します.Δfは熱雑音で検討したものと同じなので,周波数が変化してもショット雑音のIn2は一定になり,熱雑音と同じように周波数特性はフラットになります.ショット雑音は真空管でも発生します.電位障壁のない導体ではショット雑音は発生しません.

●図1(a)の机上計算とシミュレーション
 図2は,図1(a)の抵抗を抜き出し,R1の抵抗で発生する熱雑音電圧(vn)を直列に接続した等価回路です.


図2 10kΩの抵抗とその熱雑音電圧(vn)を表した等価回路.

 図1(a)のoutの出力雑音電圧は図2のR1の熱雑音電圧(vn)が現れるので,「R1=10kΩ」を用いると式1になります.

・・・・・・・・・・・・・・・・・・・・・・・(1)

 図3は,図1(a)をシミュレーションする回路です.ノイズ・シミュレーションは「.noise」ステートメントを用い,1Hz~100kHz間を周波数が10倍あたり100ポイントのスイープでoutの出力雑音電圧をプロットします.


図3 図1(a)をシミュレーションする回路

 図4は,図3のシミュレーション結果です.outの出力雑音電圧は,12.9nV/√Hzになり,式1の机上計算と一致します.


図4 図3の出力雑音電圧のプロット
出力雑音電圧は机上計算と等しい.

●図1(b)の机上計算とシミュレーション
 図5(a)は,図1(b)のR1の熱雑音電圧(vn1)とR2の熱雑音電圧(vn2)を表した等価回路です.直列抵抗の雑音は,図5(b)のように,R1とR2を加えた抵抗の熱雑音電圧(vn)と考えることができます.


図5 図1(b)の等価回路
(a) 10kΩと20kΩの直列抵抗とその熱雑音電圧(vn1,vn2)を表した等価回路
(b) 直列抵抗を1つの抵抗で表した等価回路

 図1(b)のoutの出力雑音電圧は図5(b)の「R1+R2」の熱雑音電圧(vn)が現れるので,「R1=10kΩ,R2=20kΩ」を用いると式2になります.

・・・・・・・・・・・・・・・・・・・(2)

 直列の雑音の計算で間違えやすいのは,式3のようにvn1とvn2を加算した結果にならないことです.雑音の加算は各々の2乗平均値を加えます.このことから「vn2= vn12+ vn22」となり,式2の計算になります.

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(3)

 図6は,図1(b)をシミュレーションする回路です.「.noise」ステートメントは,図3と同じでoutの出力雑音電圧をプロットします.



図6 図1(b)をシミュレーションする回路

 図7は,図6のシミュレーション結果です.outの出力雑音電圧は,22.3nV/√Hzになり,式2の机上計算と一致します.


図7 図6の出力雑音電圧のプロット
出力雑音電圧は机上計算と等しい.

●図1(c)の机上計算とシミュレーション
 図8(a)は,図1(c)のR1の熱雑音電圧(vn1)とR2の熱雑音電圧(vn2)を表した等価回路です.並列抵抗の雑音は,図8(b)のように,R1とR2の並列抵抗の熱雑音電圧(vn)と考えることができます.


図8 図1(c)の等価回路
(a) 10kΩと20kΩの並列抵抗とその熱雑音電圧(vn1,vn2)を表した等価回路
(b) 並列抵抗を1つの抵抗で表した等価回路

 R1とR2の並列抵抗は,式4になります.

・・・・・・・・・・・・・・・・・・・・・・・・・(4)

 式4の並列抵抗の熱雑音電圧は,式5になります.

・・・・・・・・・・・・・・・・・・(5)

 図9は,図1(c)をシミュレーションする回路です.「.noise」ステートメントは,図3と同じでoutの出力雑音電圧をプロットします.


図9 図1(c)をシミュレーションする回路

 図10は,図9のシミュレーション結果です.outの出力雑音電圧は,10.5nV/√Hzになり,式5の机上計算と一致します.


図10 図9の出力雑音電圧のプロット
出力雑音電圧は机上計算と等しい.

●図1(d)の机上計算とシミュレーション
 図11は,図1(d)のI1の直流電流がダイオードに流れるときのショット雑音電流(In)とダイオードの小信号抵抗(re)を使って表した等価回路です.outの出力雑音電圧(vn)は,Inとreの積になります.ダイオードの小信号抵抗(re)は,ダイオードの動作から生まれる特性なので,実際の抵抗ではありません.このため,reは熱雑音を発生しません.


図11 ショット雑音とダイオードの小信号抵抗で表した等価回路

 直流電流(I1)によるショット雑音電流(In)は,式6になります.

・・・・・・・・・・・・・・・・・・・・・・・・(6)

 ダイオードの小信号抵抗は,熱電圧(VT)と直流電流(I1)より式7になります.ここで常温(27℃)での熱電圧はおおよそ「VT=26mV」です.

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(7)

 式6と式7を使い,図1(d)のoutの出力雑音電圧(vn)は,式8になります.

・・・・・・・・・・・・・・・・・・・・・・・(8)

 図12は,図1(d)をシミュレーションする回路です.「.noise」ステートメントは図3と同じで,outの出力雑音電圧をプロットします.


図12 図1(d)をシミュレーションする回路

 図13は,図12のシミュレーション結果にです.outの出力雑音電圧は4.6nV/√Hzになり,式8の机上計算とほぼ一致します.以上の検討より,図1の(a)~(d)の中でoutの出力雑音電圧が最も低いのは図1(d)になるのが分かります.


図13 図12の出力雑音電圧のプロット
出力雑音電圧は机上計算と等しい.


■データ・ファイル

解説に使用しました,LTspiceの回路をダウンロードできます.
LTspice9_002.zip

●データ・ファイル内容
thermal noise1.asc:図3の回路
thermal noise1.plt:図3のプロットを指定するファイル
thermal noise2.asc:図6の回路
thermal noise2.plt:図6のプロットを指定するファイル
thermal noise3.asc:図9の回路
thermal noise3.plt:図9のプロットを指定するファイル
shot noise.asc:図12の回路
shot noise.plt:図12のプロットを指定するファイル

■LTspice関連リンク先


(01) LTspice ダウンロード先
(02) LTspice Users Club
(03) LTspice メール・マガジン全アーカイブs
(04) ◆LTspice電子回路マラソン・アーカイブs
(05) ◆LTspiceアナログ電子回路入門アーカイブs
(06) ◆LTspice電源&アナログ回路入門アーカイブs
(07) ◆IoT時代のLTspiceアナログ回路入門アーカイブs
(08) ◆オームの法則から学ぶLTspiceアナログ回路入門アーカイブs
(09) ◆LTspiceエデュケーショナル・ファイルで学ぶアナログ回路アーカイブs
(10) ◆LTspiceドット・コマンドから学ぶアナログ回路アーカイブs
(11) ◆LTspiceで始める実用電子回路入門アーカイブs

トランジスタ技術 表紙

CQ出版社オフィシャルウェブサイトはこちらからどうぞ

CQ出版の雑誌・書籍のご購入は、ウェブショップで!


CQ出版社 新刊情報


近日発売

Interface 2025年 2月号

ラズパイで作り学ぶ Dockerコンテナ

CQ ham radio 2025年 1月号

2025年のアマチュア無線

HAM国家試験

第4級ハム国試 要点マスター 2025

HAM国家試験

第3級ハム国試 要点マスター 2025

トランジスタ技術 2025年 1月号

注目のロボット センサ&走行制御!

アナログ回路設計オンサイト&オンライン・セミナ