回路の基本的な素子コンデンサの電圧と電流
図1は,47μFのコンデンサ(C1)に,周波数が50Hz,実効値が1Vの交流電圧V1を印加した回路です.コンデンサに流れる電流は,V1を基準にすると位相は進みます.
図2は,図1のV1の交流電圧v(t)とコンデンサに流れる電流i(t)を図示しました.(a)と(b)は電流の実効値が14.8mA,(c)と(d)は10.5mAです.また,(a)と(c)は,i(t)がv(t)より位相が90°進み,(b)と(d)は45°進んでいます.図1の回路で,C1に流れる電流i(t)は,図2の(a)~(d)のどれでしょうか?
図1のC1に流れる電流は,図2の(a)~(d)のどれか.
今回は,コンデンサの電圧と電流の関係について解説します.コンデンサに流れる電圧と電流は「i(t)=C1*dv(t)/dt」の関係があります.「v(t)=√2*ViSIN(ωt)」より,i(t)の時間変化を求めると分かります.
コンデンサに流れる電流は,容量,電圧,時間で表すと,式1の関係があります.
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1)
また,電圧は式2であり「ω=2πf」です.
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
図1より,コンデンサ(C1)の容量は47μF,電圧の振幅は「√2*1V」,周波数(f)は50Hzより「ω=100π」です.式2を式1へ代入し整理すると式3となります.
・・・・・・・・・・・・(3)
式3より,電流の実効値は14.8mAで,周波数(f)は電圧と同じ50Hzです.また,式2のv(t)と比べると,位相(π/2)が90°進むことが分かります.
以上より,解答は(a)となります.
●コンデンサは誘電体を挟んで2つの電極
図3は,2つの電極が誘電体によって分離されたコンデンサのモデルを使い,図1を書き直しました.コンデンサは誘電体を挟んで2つの電極があります.2つの電極は,距離がDだけ離れており,誘電体の誘電率をε,また,2つの電極間の電界をEとして表しています.
コンデンサに電圧を印加すると,1つの電極に電子が集まって-qとなり,もう1つの電極には電子が少なくなって+qとなります.コンデンサに交流電圧を印加したとき,+qと-qの状態が入れ替わり,充放電を繰り返すことから交流電流を通す動作となります.コンデンサの単位はファラド(F)を使い,1秒間に電流が1A変化したとき,電圧が1V変化すれば1Fとなります.
●コンデンサの電圧と電流の比例関係を導く
ここでは図3用いて,コンデンサの電圧と電流の関係を導き,コンデンサの性質を理解します.図3の電極の面積をA,誘電体の誘電率をεとすれば,電界(E)は式4となります.
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(4)
コンデンサの電極間の電圧は式4と2つの電極間の距離(D)より,式5となります.
・・・・・・・・・・・・・・・・・・・・・・・・・・・・(5)
電流は電荷の時間変化ですので,式5を使うと,式6となります.
・・・・・・・・・・・・・・・・(6)
また,コンデンサの静電容量は電極の面積(A),誘電率(ε),電極間の距離(D)より,式7で表せます.
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(7)
式7を使って式6を書き直すと,コンデンサに流れる電流は式8となり,解答の計算で使った最初の式1が導出されました.解答では式8を使い,電流の実効値と位相を調べています.
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(8)
また,式8より,コンデンサに電流を印加したときの電圧変化は式9となります.
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(9)
コンデンサの電流と電圧の比例関係は,式8と式9です.オームの法則である抵抗(R),電圧(V),電流(I)の比例関係「V=RI」と同じように,式9の積分した電流は電圧と比例関係にあることが分かります.例えば,定電流源でコンデンサを充電し,ある電圧までの充電時間をタイマとした回路設計では,式9を用います.
●コンデンサに流れる電流をLTspiceで確かめる
図4は,図1をシミュレーションする回路で,コンデンサに流れる電流を調べます.流れる電流は,赤の矢印方向をプロットします.LTspiceでC1に流れる電流をプロットするとき,マウスをC1の上に置いて左クリックすれば表示できます.しかし,電流はGNDからV1に向かうこととなり,プロットしたい電流の方向は逆となります.演算して電流の向きをV1からGNDへ直せますが,ここでは直感的に理解しやすいように,0Vの電圧源を電流計の代わりに使用します.図4では,V2のプラスからマイナス方向へ流れる電流を表示させます.
図5は,図4のシミュレーション結果です.まず,電流波形の振幅をカーソルで調べると20.9mAです.これは,√2×14.8mAと同じであり,解答の実効値と同じであることが分かります.
実効値は,LTspiceでも求めることができ,図5のプロットで,電流波形のラベルの上にマウス・カーソルを置き「Ctrl+左クリック」で図6の小さなウィンドウが開きます.この中のRMSの箇所が実効値であり,14.8mAであることが分かります.
プロットしている波形のラベルの上で,Ctrlキーを押しながら左クリック
次に電圧が0Vと交差する時間と電流が0Aと交差する時間に着目します.解答の計算で得たように,コンデンサに流れる電流は,電圧を基準とすると90°進みます.図5では,電圧が0Vと交差する時間より手前の時間で,電流は0Aと交差しており,1/4周期だけ進んでいることが分かります.1周期は360°(弧度法で2π)ですので,1/4周期は90°(弧度法でπ/2)となり,解答の計算と同じになります.
解説に使用しました,LTspiceの回路をダウンロードできます.
LTspice3_002.zip
●データ・ファイル内容
CL_Current.asc:図4の回路
■LTspice関連リンク先
(1) LTspice ダウンロード先
(2) LTspice Users Club
(3) トランジスタ技術公式サイト LTspiceの部屋はこちら
(4) LTspice電子回路マラソン・アーカイブs
(5) LTspiceアナログ電子回路入門・アーカイブs