LDOレギュレータのライン・レギュレーション



『LTspice Users Club』のWebサイトはこちら

■問題

平賀 公久 Kimihisa Hiraga

 図1は,出力パス・トランジスタにPNPトランジスタ(Q1)を用いたLDO(Low Drop Out)レギュレータです.この回路で,IN端子の電圧が10V~30Vまで変化したとき,ライン・レギュレーション(ΔVOUT)が10mV以内となるのは,OPアンプの直流オープン・ループ・ゲイン(A)が(a)~(d)のどの場合でしょうか.
 ここで,PNPトランジスタ(Q1)のアーリー電圧は「VA=100V」で,熱電圧が「VT=26mV」です.また,計算を簡単にするため,OPアンプは,直流オープン・ループ・ゲイン(A)のみが変化する理想OPアンプとし,入力インピーダンスが無限大,出力インピーダンスをゼロとします.


 図1 LDOレギュレータの回路

(a)70dB以上,(b)80dB以上,(c)90dB以上,(d)100dB以上

■ヒント

 今回は,LDOレギュレータのライン・レギュレーションについて解説します.ライン・レギュレーションとは,入力電圧が変化した場合の,出力電圧の変動幅です.図1のLDOレギュレータは,出力パス・トランジスタ(Q1),抵抗(R1,R2),OPアンプで負帰還回路を構成し,VREFの電圧をR1とR2の比で増幅します.IN端子の変化は負帰還回路により抑えられますが,OPアンプは有限の直流オープン・ループ・ゲインであるため,わずかに出力電圧が変化します.図1のPNPトランジスタを等価回路(ここではπ型等価回路)で表し,IN端子の変化が,負帰還回路により,出力に伝達されるかを計算することにより求められます.


■解答


(b)80dB以上

 図1のOUT端子の出力電圧(VOUT)は式1となります.

・・・・・・・・・・・・・・・・・・・・・・・・・(1)

 ここで,βは負帰還の帰還率であり式2となります.

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)

 式1の右辺第一項は,VREFの電圧をR1とR2の抵抗比で増幅した出力電圧なので,図1の出力電圧は4.96Vとなります.また,右辺第二項は,IN端子の電圧によるOUT端子の誤差であり,OUT端子にはIN端子の電圧を負帰還のループ・ゲイン(Aβ)で除算した電圧が現れます.
 式1の右辺第二項より,IN端子の電圧の変化をΔVINとすれば,OUT端子の電圧誤差であるΔVOUTが式3となります.

・・・・・・・・・・・・・・・・・・・・・・・・・・・・(3)

 式3より,(a)~(d)のOPアンプの直流オープン・ループ・ゲインと式2の帰還率を使って計算すると次のようになり,OUT端子の出力電圧が10mV以内となるのは(b)の80dB以上となります.

(a)70dB   ΔVOUT=26.1mV
(d)80dB ΔVOUT=8.3mV
(c)90dB ΔVOUT=2.6mV
(d)100dB ΔVOUT=0.8mV

■解説

●LDOレギュレータの概要
 まず,LDOレギュレータの概要から解説します.図2(a)は,出力パス・トランジスタにPNPトランジスタを用いたLDOレギュレータのブロック図です.図2(b)は出力パス・トランジスタにNPNトランジスタを用いた,古くからある三端子レギュレータのブロック図です.図2(a)と(b)とも基準電圧をR1とR2の抵抗比により増幅し,定電圧出力となります.2つの回路の違いは,出力パス・トランジスタがPNPかNPNの差です.負帰還とするために,OPアンプの2つの入力端子が入れ替わっています.
 LDOレギュレータの特徴は,出力パス・トランジスタにPNPトランジスタ(または,PMOS)を用いることにより,IN端子とOUT端子の入出力間電位差を小さくでき,低ドロップ・アウトのリニア・レギュレータとなります.入出力間電位差が何ボルトならLDOレギュレータと呼ぶというような決め事はありません.しかし,出力パス・トランジスタがPNPかPMOSを使い,入出力間電位差が0.2V~0.3V以下のリニア・レギュレータをLDOレギュレータと呼ぶことが多いと思います.
 図2(a)と(b)の入出力間電位差を比較すると,図2(a)の入出力間電位差の最小値は,PNPトランジスタの飽和電圧で決まり,その値を小さくできます.一方,図2(b)の古くからある三端子レギュレータの入出力間電位差は,IN端子とOPアンプ最大出力電圧の差電圧と,NPNトランジスタのベース・エミッタ間電圧(VBE)を加えた電圧であり,図2(a)のように小さくできません.これらは,図2(a)と(b)に赤の破線で示しました.
 以上はIN端子の電圧が低電圧のことであり,IN端子が低い電圧から高い電圧へ推移したときの出力電圧変動は,今回のように,ライン・レギュレーションについて注意しなければなりません.


図2 LDOレギュレータと,古くからある汎用の三端子レギュレータのブロック図

●LDOレギュレータの等価回路
 図3は,図1を等価回路で表すため,回路の各ノード(回路の節点)に電圧の記号を付けました.図3のOPアンプは,入力インピーダンスが無限大,出力抵抗がゼロの理想OPアンプとします.


図3 図1の回路へ各ノード電圧を記号で表した回路

 図4は,PNPトランジスタのπ型等価回路です.π型等価回路は,アナログ回路の計算でよく使われます.図4のrπはトランジスタの入力抵抗,gmはトランスコンダクタンス,roは出力抵抗です.図4ではベース・エミッタ間の入力抵抗に印加される電圧v1により,エミッタからコレクタへgmv1の電流が流れることになります.rπ,gm,ro図4中の式で表されます.ここで,βoは電流増幅率,VTは熱温度,VAはアーリー電圧,ICはコレクタ電流です.


図4 PNPトランジスタのπ型等価回路

 図5は,図3の等価回路で,図4を使って計算しやすく書き直したものです.図5図4のrπがありませんが,これはOPアンプの出力抵抗をゼロとしたためです.


図5 図3の等価回路

●等価回路を用いて計算する
 次に図5の等価回路を用い,VINの電圧がVOUTにどのように伝わるかを計算します.まず,キルヒホッフの電流則(KCL)より,VOUTのノードに流れ込む電流の総和をゼロとすると式4になります.

・・・・・・・・・・(4)

 VERR図5より式5です.

・・・・・・・・・・・・・・・・・・・・・・・・・・・・(5)

 式4と式5を整理すると式6となります.

・・・・・(6)

 また,R1とR2の分圧回路の電圧VDIVは式7となります.ここでβは式(2)となります.

・・・・・・・・・・・・・・・・・・・・・・・(7)

 式6と式7整理すると式8となります.

・・・・・(8)

 式8の意味を分かりやすくするため,PNPトランジスタ単体のゲインをAPとし「AP=gmro」となるように両辺にroを乗じると式9となります.

・・・・・(9)

 式9をVOUTについて解き整理すると,式10となります.

・・・・・(10)

 式10を使い,両辺のどの項が支配的かを評価します.式10の左辺のroは,PNPトランジスタの出力抵抗であり,図4に記載した「ro=VA/IC」の関係とコレクタ電流(IC)は,負荷電流が支配的とすれば「IC=4.96V/100Ω=49.6mA」なので,「VA=100V」より「ro=2kΩ」と近似できます.また,PNPトランジスタのゲイン(AP=gmro)は「gm=IC/VT=49.6mA/26mV=1.9 [A/V]」なので「AP=(1.9A/V)*(2kΩ)=3.8」となります.OPアンプのオープン・ループ・ゲインは,最低でも70dB(=3162)ですので,式10の左辺はAPAβが支配的であることがわかります.
 次に右辺が「(AP+1)=AP」と近似すれば,式10の近似式は式11となります.

・・・・・・・・・・・・・・・・・・・・・(11)

 以上より,式11を用いると,VINとVOUTの関係は,解答の式1となります.

●LDOレギュレータをLTspiceで確認する
 図6は,図1をシミュレーションする回路です.「.dcコマンド」でIN端子の電圧となるV1の電圧源を10V~30Vにスイープします.また,OPアンプの直流オープン・ループ・ゲインは「.stepコマンド」で4種類変化させました.シミュレーション値は直読できるように「.measコマンド」でV1が10V,20V,30Vのときの値をVo1,Vo2,Vo3の変数へ,10V~30V変化したときの傾きは LineRegの変数へ,10V~30Vの変化に対する出力電圧の変化をdVoの変数へ格納します.


図6 図1をシミュレーションする回路
 OPアンプの直流オープン・ループ・ゲインを70dB,80dB,90dB,100dBとし,IN端子の電圧が10V~30Vに変化したときの出力電圧をシミュレーションする.

 理想OPアンプのサブサーキットは,図7とし「.stepコマンド」のデシベルで与えた数値を,倍率へ変換して与えています.


図7 図6のOPアンプのサブサーキット

 図8図7のシミュレーション結果です.「.measコマンド」で得られた電圧値をプロットへ加えました.また,IN端子の電圧が10V~30V変化したときのOUT端子の電圧変化は,「.measコマンド」より下記となります.step1は70dB,step2は80dB,step3は90dB,step4は100dBのOPアンプの直流オープン.ループ・ゲインです.このシミュレーション値は,解答で計算した値と一致しています.

Measurement: dvo
step   vo3-vo1
1 0.0261493
2 0.00826883
3 0.00261497
4 0.000826836


図8 図6のシミュレーション結果
「.measコマンド」で得た電圧値をプロットしている.

■データ・ファイル

解説に使用しました,LTspiceの回路をダウンロードできます.
LTspice3_046.zip

●データ・ファイル内容
LDO_Line_Reg_DC.asc:図6の回路
Ideal_OP.asc:図7の回路
Ideal_OP.asy:図7のシンボル

■LTspice関連リンク先


(1) LTspice ダウンロード先
(2) LTspice Users Club
(3) トランジスタ技術公式サイト LTspiceの部屋はこちら
(4) LTspice電子回路マラソン・アーカイブs
(5) LTspiceアナログ電子回路入門・アーカイブs
(6) LTspice電源&アナログ回路入門・アーカイブs

トランジスタ技術 表紙

CQ出版社オフィシャルウェブサイトはこちらからどうぞ

CQ出版の雑誌・書籍のご購入は、ウェブショップで!


CQ出版社 新刊情報



トランジスタ技術 2018年 8月号

電子回路500超 シミュレーション実験DVD

トランジスタ技術SPECIAL

ベスト・アンサ150! 電子回路設計ノウハウ全集(TRSP No.143)

Interface 2018年 8月号

IoT新技術 なるほどブロックチェーン

トランジスタ技術 2018年 7月号

プリント基板製作 超入門フルセットDVD

Interface 2018年 7月号

特集 360°&マルチ時代カメラ画像処理 特別特集 はじめての動画処理プログラム全集